Smooth Gevrey normal forms of vector fields near a fixed point
نویسندگان
چکیده
منابع مشابه
Smooth Gevrey normal forms of vector fields near a fixed point
We study germs of smooth vector fields in a neighborhood of a fixed point having an hyperbolic linear part at this point. It is well known that the “small divisors” are invisible either for the smooth linearization or normal form problem. We prove that this is completely different in the smooth Gevrey category. We prove that a germ of smooth α-Gevrey vector field with an hyperbolic linear part ...
متن کاملVector ultrametric spaces and a fixed point theorem for correspondences
In this paper, vector ultrametric spaces are introduced and a fixed point theorem is given for correspondences. Our main result generalizes a known theorem in ordinary ultrametric spaces.
متن کاملNormal Forms of Vector Fields on Poisson Manifolds
We study formal and analytic normal forms of radial and Hamiltonian vector fields on Poisson manifolds near a singular point.
متن کاملRobust normal forms for saddles of analytic vector fields
The aim of this paper is to introduce a technique for describing trajectories of systems of ordinary differential equations (ODEs) passing near saddle-fixed points. In contrast to classical linearization techniques, the methods of this paper allow for perturbations of the underlying vector fields. This robustness is vital when modelling systems containing small uncertainties, and in the develop...
متن کاملPolynomial Normal Forms for Vector Fields on R3
The present paper is devoted to studying a class of smoothly (C∞) finitely determined vector fields on R3. Given any such generic local system of the form ẋ = Ax + · · · , where A is a 3 × 3 matrix, we find the minimal possible number i(A) such that the vector field is i(A)-jet determined, and we find the number μ(A) of moduli in the C∞ classification. We also give a list of the simplest normal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales de l’institut Fourier
سال: 2013
ISSN: 0373-0956,1777-5310
DOI: 10.5802/aif.2760